

European Journal of Pharmacology 387 (2000) R11-R13

www.elsevier.nl/locate/ejphar

Rapid communication

Differential down-regulation of the human δ-opioid receptor by SNC80 and [D-Pen²,D-Pen⁵]enkephalin

Takashi Okura, Scott M. Cowell, Eva Varga, Thomas H. Burkey, William R. Roeske, Victor J. Hruby, Henry I. Yamamura *

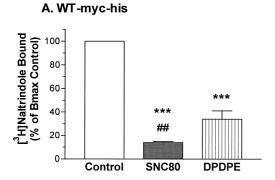
Departments of Pharmacology, Biochemistry, Medicine, Psychiatry, and the Program in Neuroscience, College of Medicine, University of Arizona Health Sciences Center, Tucson, AZ, 85724, USA

Accepted 29 October 1999

Abstract

We examined the contribution of the human δ -opioid receptor carboxyl terminal tail to (+)-4- $[(\alpha R)$ - α -((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N, N-diethylbenzamide (SNC80)- and cyclic[D-Pen²,D-Pen⁵]enkephalin (DPDPE)-mediated receptor down-regulation. Both SNC80 and DPDPE mediated down-regulation of an epitope tagged human δ -opioid receptor. Truncation of the human δ -opioid receptor after Gly 338 blocked DPDPE-mediated down-regulation. However, SNC80 mediated significant down-regulation of the truncated receptor. These findings suggest that SNC80-mediated down-regulation involves receptor domains in addition to the carboxyl terminal tail. © 2000 Elsevier Science B.V. All rights reserved.

Keywords: δ-Opioid receptor; Down-regulation; Carboxyl terminal tail


It has been established that chronic agonist treatment causes decreased opioid receptor activation (Zadina et al., 1995). Reduced receptor expression on the cell surface, termed down-regulation, is thought to contribute to this loss of function. Chronic treatment with (+)-4-[(αR) - α -((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N,N-diethylbenzamide (SNC80) causes down-regulation and desensitization of the human δ -opioid receptor expressed in Chinese hamster ovary (CHO) cells (Malatynska et al., 1996). Cvejic et al. (1996) demonstrated that the carboxyl terminal tail is necessary for [D-Ala²,D-Leu⁵]enkephalin (DADLE)-mediated down-regulation and the Thr³53 located within the carboxyl terminal tail mediates down-regulation of the mouse δ -opioid receptor.

E-mail address: hiy@u.arizona.edu (H.I. Yamamura)

However, the role of the carboxyl terminal tail of the human δ -opioid receptor on agonist-mediated down-regulation is not known since Thr³⁵³ is already an Ala in the human δ -opioid receptor sequence (Knapp et al., 1994). Furthermore, it is uncertain whether the mechanism mediating down-regulation of δ -opioid receptor is identical for all agonists.

We prepared myc-his epitope tagged variants of the human δ -opioid receptor. These variants represent full-length receptor (WT-myc-his) and a 34-amino acid truncation (Δ^{34} -myc-his) labeled at the carboxyl end. δ -Opioid receptor cDNA was ligated into pcDNA3.1/myc-his to create receptor constructions and transfected into CHO cells. We examined the role of the carboxyl terminal tail on SNC80- and cyclic [p-Pen²,p-Pen⁵]enkephalin (DPDPE)-mediated receptor down-regulation using these cell lines. The cells were incubated with Iscove's modified Dulbecco's medium (IMDM) \pm SNC80 or DPDPE (both 500 nM) for 24 h. After incubation, cell membranes were prepared and the binding assays for δ -opioid receptors were performed using [³H]naltrindole as described in the figure legend (Knapp et al., 1994). Each experiment was

^{*} Corresponding author. Department of Pharmacology, College of Medicine, University of Arizona Health Sciences Center, 1501 N. Campbell Ave., Tucson AZ 85724, USA. Tel.: +1-520-626-7381; fax: +1-520-626-2204.

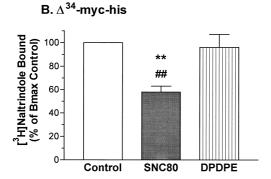


Fig. 1. Effect of chronic SNC80 or DPDPE pretreatment on the $B_{\rm max}$ values of specifically bound [3H]naltrindole in CHO cell membranes expressing the WT-myc-his (A) and the Δ^{34} -myc-his (B). Cells were preincubated with SNC80 or DPDPE (both 500 nM) for 24 h and then rinsed with IMDM (37°C) three times. Saturation binding studies were performed using varying concentration of [³H]naltrindole (0.03–0.5 nM). Briefly, membranes prepared from these cells were incubated with [3 H]naltrindole in Tris (50 mM)/MgCl₂ (5 mM) buffer, pH = 7.4, for 90 min at 30°C. Nonspecific binding was determined in the presence of 10 μM naltrexone. The B_{max} and K_{d} values for specifically bound [³H]naltrindole were estimated by nonlinear regression analysis using the Prism ver.2 (GraphPad, San Diego, CA). Each column represents the average $B_{\rm max}$ value expressed as percentage of control (cells treated with IMDM only) plus the standard error of four determinations. **P < 0.01or ***P < 0.001 for SNC80 or DPDPE pretreatment compared with control. $^{\#\#}P < 0.01$ when SNC80 pretreatment was compared with DPDPE pretreatment.

performed in parallel with a control (cell treated with IMDM only). The apparent dissociation constant (K_d) and maximal number of binding sites ($B_{\rm max}$) for specifically bound [3 H]naltrindole were estimated by nonlinear regression analysis using the Prism ver.2 (GraphPad, San Diego, CA) and statistical significance was determined by a one-way analysis of variance (ANOVA) and a Newman–Keuls test. Statistical significance was accepted at P < 0.05.

Specifically bound [3 H]naltrindole in membranes prepared from both cell lines expressing the WT-myc-his and the Δ^{34} -myc-his appeared to be saturable and the Rosenthal analysis revealed a linear plot (data not shown), suggesting a single population of binding sites. Treatment of the WT-myc-his cells with SNC80 or DPDPE significantly decreased the $B_{\rm max}$ values of [3 H]naltrindole bound by 86% and 66%, respectively (Fig. 1A) ($B_{\rm max}$: control 1410

 \pm 190, SNC80 pretreatment 196 \pm 31, DPDPE pretreatment 479 \pm 88 fmol/mg protein). In the Δ^{34} -myc-his cells, SNC80 caused a significant reduction of the B_{max} value by 42%, but there was no significant change in the $B_{\rm max}$ value of [3H]naltrindole bound after DPDPE pretreatment (Fig. 1B) (B_{max} : control 153 ± 15, SNC80 pretreatment 90 ± 14 , DPDPE pretreatment 148 ± 25 fmol/mg protein). The reduction by SNC80 was significantly different from that by DPDPE in both cell lines. The loss of specifically bound [3H]naltrindole was not due to insufficient wash out of the unlabeled agonist since the K_d values for [3H]naltrindole were not significantly different after treatment with SNC80 and DPDPE in both the WT-myc-his (K_d : control 117 ± 26, SNC80 pretreatment 126 ± 25, DPDPE pretreatment 109 ± 31 pM) and the Δ^{34} -myc-his cells (K_d : control 86 \pm 17, SNC80 pretreatment 126 \pm 26, DPDPE pretreatment 84 ± 20 pM).

These data demonstrate the differential down-regulation of the human δ -opioid receptor by SNC80 or DPDPE. Truncation of the carboxyl terminal tail from the δ -opioid receptor is sufficient to attenuate receptor down-regulation induced by chronic DPDPE exposure. In contrast, significant down-regulation of the truncated human δ-opioid receptor after SNC80 pretreatment still remains. These findings indicate that regulation of the human δ -opioid receptor by chronic SNC80 exposure involves receptor domains in addition to the carboxyl terminal tail. DPDPEmediated down-regulation is solely dependent on the carboxyl terminal tail. The differential down-regulation mediated by SNC80 and DPDPE may be related to their recognition sites for the human δ-opioid receptor since SNC80 has a unique interaction with Trp²⁸⁴ that is not shared by other δ -opioid ligands such as DPDPE (Li et al., 1995). Thus, the molecular mechanisms responsible for SNC80- and DPDPE-mediated down-regulation of the human δ -opioid receptor are not identical.

Acknowledgements

We thank Michelle Thatcher and Carol Haussler for their assistance with the maintenance of cell lines expressing the WT-myc-his and the Δ^{34} -myc-his and Sue Waite for assistance. This work was supported in part by grants from the Arizona Disease Control Research Commission and NIDA.

References

Cvejic, S., Trapaidze, N., Cyr, C., Devi, L.A., 1996. Thr 353 , located within the COOH-terminal tail of the δ opiate receptor, is involved in receptor down-regulation. J. Biol. Chem. 271, 4073–4076.

Knapp, R.J., Malatynska, E., Fang, L., Li, X., Babin, E., Nguyen, M., Santoro, G., Varga, E.V., Hruby, V.J., Roeske, W.R., Yamamura, H.I., 1994. Identification of a human delta opioid receptor: cloning and expression. Life Sci. 54, PL463–PL469.

- Li, X., Knapp, R.J., Stropova, D., Varga, E., Wang, Y., Malatynska, E., Calderon, S., Rice, K., Rothman, R., Porreca, F., Hruby, V.J., Roeske, W.R., Yamamura, H.I., 1995. Trp²⁸⁴ of the human δ opioid receptor is required for SNC121 binding but not binding of pCl-DPDPE, deltorphin II or naltrindole. Analgesia 1, 539–542.
- Malatynska, E., Wang, Y., Knapp, R.J., Waite, S., Calderon, S., Rice, K., Hruby, V.J., Yamamura, H.I., Roeske, W.R., 1996. Human delta
- opioid receptor: functional studies on stably transfected Chinese hamster ovary cells after acute and chronic treatment with the selective nonpeptidic agonist SNC80. J. Pharmacol. Exp. Ther. 278, 1083–1089.
- Zadina, E., Kastin, A.J., Harrison, L.M., Ge, L.J., Chang, S.L., 1995.Opiate receptor changes after chronic exposure to agonists and antagonists. Ann. N. Y. Acad. Sci. 757, 353–361.